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OVERVIEW

This report summarizes work done under Countract F04611-84-C-0G32
during the period 31 August 1984 through 1 March 1985. The principal
goals were a demonstration of state-space procedure for modelling and
control of a flexible structure, and, more generally, increased
understanding of contral problems for such systems. The state-space
dpproach is based on a model of the distributed system. That is, the
model includes the necessary partial differential equations without

modal truncation. The basic view 15 that it is preferable to avoid

introducing approximations until they are required (e.g., for numerical
calculations). The program (formal model, state-space model, optimal-
control formulation, approximation procedure and numerical calculation)
is carried out, in detail, for a simple structural system including a
rotating hub, a flexible beam and a tip mass. The work is described in
Part 1 of this report. A final section in this Part provides some
parallel results for a more complex structure comprised of a hub, twa
flexible support beams and a tip-body.

The second part uf the report is concerned with some parasitic
effects on the stability of a distributed system with feedback. The
approach is based on an input-output description of the system;
specifically, a transfer-function appruach is used. In grder to keep
the calculation burden reasonably small the structural model studied is
a simple cable which requires only second-grder spatial aerivatives.

The baseline system employs feedback of a force to the "free end" of the

iv
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cable at a magnitude proportional to the velocity at the "free end".
The gain parameter can be varied to produce a locus of roots; albeit one
with a countably infinite number of branches.

The basic system is examined and then the effects of three
modifications are studied. These are: time-delay in the feed-back
loop; time-lag in the feed-back loop; and, viscous damping in the system
forward-loop. The most startling result is that with time-delay the

undamped system will be unstable for any non-zero gain. Viscous damping

apparently provides some help here; with such damping the system will be

stable at least for "small" gain values.
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INTKODUCTION

This rerort deals with modelling and control of the structure shown
in Figure 1. It is assumed that the structure is pivoting about a fixed
pivot at point 0, and that the motion is in a plane. The structure
consists of three parts, the main frame (body A}, the beam (body B), and
the end mass (body C). The main frame is assumed to be a rigid body
pivoting about point 0. The beam is assumed to be flexible and rigidly
attached to the main frame as a cantilevered beam. Finally, the end
mass is rigidly attached to the end of the beam so that it moves and
rotates with the end of the beam and its attachment point is assumed to
be at the center of mass of the end mass. A tree body diagram of each
nass is shown in Figure 2.

This report may be logically divided into five parts. In the next
section a 'formal' model for the system is developed. This is done by a
direct application of Newtonian mechanics to each of the structural
components. The model is 'formal' in the éense that no attempt is made
to show that the resulting system of (coupled partial and ordinar:)
differential equations is well-posed. That is, we do not prove that the
system has a unique sclution for a certain c¢lass of initial data, nor do
we prove that the solution depends continuously on the initial da:a.

A second section 1s cencerned with development of an abstract
state-space model. 3ince the differential equations are linear (more

appropriately linearized), the abstract model is in the form
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y(t) = ay(t) + Bu(t)

where y(t) is the state at time t, u(t) is the control and & and B are
linear operators. The point of this formulation is that one has a
theory that guarantees well-posedness under concrete and verifiable
conditions un the vperators. We construct our model so that the system
has these properties and hence we have a guarantee that the differential
system makes sense,

A third section is devoted to linear-quadratic regulator theory
for the abstract system. The feedback structure of the optimal control
is discussed along with a factorization procedure that can significantly
reduce the computational problem. A general theory of numerical
approximation is also included in this section. A fourth section
presents details for developing a class of numerical approximations.
Some numerical results are included.

Tne final section describes an analysis of a more complex structure
including a rigid hub, two flexible side beams and a tip-body. This
analysis parallels that of the simpler case but provides fewer details

and no numerical results.
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I. EQUATIONS OF MOTION

The mathematical model of the structure shown in Figure 1 is
develuped in this section. It is assumed that the structure is pivoting
dabout a fixed pivot at point O, and that the motion is in a plane. The
development is achieved by direct application of Newton's Laws to
individual members of the structure with the resulting equations summed
to determine the uverall motion. The development is rigorous with
assumptions stated as needed or desired.

The structure consists of three parts, the main frame, or mass A,
the beam, or mass B, and the end mass, or mass C, The main frame is
assumed tu be a rigid body pivoting about point 0. The beam is assumed
to be flexible and rigidly attached to the main frame as a cantilevered
beam. The end mass is rigidly attached to the end of the beam so that
it moves and rotates with the end of the beam. Finally, the attached
point is assumed Lty be at the center of mass of the end mass. free

body diagrain of each mass is shown in Figure 2.

geam Equations

The coordinate system to be used is fixed in the main frame ana
rotates with it. The urigin 1s at point 0 with the x axis pointing
along the undeflected beam, the z axis, the axis of rotation, and the y

ax1s completing the right hand set. The position vector to some point

on the beam 1s given by
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position to undeflected location of mass element dm

position of mass element dm with respect to its
undeflected position.

that the deflections U are small. The governing

equations are given by

r(t,x) = r(xj +U(t,x)
- V3T ) iy 3 froa
rre](t,x < cuftyx) | ut(t,x, (1.2}
at
Ty T )
Fray (EsX) .u£§£x2 = Upe(toxy
o)

where

and by Newton's Law

velocity relative %o the rotating coordirate
system

acceleration relative to the rotating cuordinate
system

s which are [6):

(a0




where
F = total externa! force
HO = totai external moment acting about point Q.
The general expression for the acceleration at any point 1s grver by (27
T =3 + (_: I e r '— T I
a 3 wx (Lixr X T+ 2, & rel " Trel r1.4;
he can note that for the cenditions of this problem EO = 0 since it is a
fixed pivot.
we can apply the moment equation (1.3) to the beam. Substituting
the expressions for r and its derivatives (eq. 1.2, along with the ‘
expression for the acceleration (eq. 1.4} into (eq. 1.3) yields the
general result:
- IR S . .
Ve : - 1 - ~— .
Mo Tatrox Cox (wx M1 + Ux % x (=« ri)+ rox
(- x (oxul] + ux[“x (Txuwl] = Fx(Txr)+ux
(.T,(r")\‘c'xkxxa}+r:X(:xU)*ZYL‘R(‘-h’(;..>
L
P x (Txu) v FxT, rUxT
{ uy) X Upy TUX Upy dm /
where M 77 jg the total appiied mcment on the Leam about pcint 9.

0

fguation {1.5) reduces considerably if we take

cdditiona) assumptions. If . 1s assumed small

o

P

advantage cf scre

S0 *hat products suzh as

€, .u and 0f course u° are

negl:gib

w

e, all but two terms Are dragped
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from eq. (1.5). If we further assume the deflections cccur only

perpendicular to the beam (no stretching of the beam, consistent with

small angular rates and deflections), then u = uj, and eq. (1.5) becomes
7. (8)

where

Ioé;=fa?x O x ¥) dm

IOB = moment of inertia c¢f the undeflected beam about pcint O.

Equation {1.6) is the beam moment equation.

The elastic equation for the beam is obtained from basic prin-
ciples. If the beam is assumed to have uniform properties along its
length, and that no external forces act on the beam except those at the

boundaries, then the equation of motion of an element of the beam is

given by [5]

T ) A ] ! L A
t,x) = - Ei Zutx) jo= - 134 uxxxx‘tfx) J ‘
b Ix
whera
£l = the stiffness properties of the beam {constant)

> s density per unit length of the beam {constant)
a(t,x) = the acceleration of the beam element.

The acceleration is given by eq. (1.4} which can be substituted intc eq.

(1.7}. Under the previous assumptions, eg. (1.7, reduces to

tt(t,x) = -El u (t,x; - (t) (1.8

. o . S R I Rt .‘-’. . “"_-- _f'_. JCRN LSl _'.‘ T '..'_'.".' T _'-“ LA
R S T AT DAL D P U TR LT W PP . S Aadhsl etndbitiuest dhasiestcnhinadsl
ALY c al el



Main Frame

The equations for the main frame are sin '~ the rigid bdody

equations of motion. The moment equation is

‘_ TN L Ty s 1 Se) \
: M = Iy w(t) = I, w(t) k (1.9}
N where
N IA = moment of inertia of main frame about point 0.
i End Mass
- Both the force and moment equations are needed for the end mass
& since it is translating as well as rotating. The force equation is
ﬁ given by
A
: Fo= T = mr(t,L) (1.10)
where
? -

L= force on mass due to beam.

Under the previous assumptions, eq. {1.10) becomes

(1.11)
= . \ Zren
fLy mc[L*(t, +(t)]

where n~(t} = ut(t,L). the relative velocity of the end cf the beanm
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For planar motion, only the 2z component of the moment is of

interest and leads to

Mc=1c¢(t) (1

-
tes
[aN]

~—

where

IC = moment of inertia of the end mass about its center of
mass

®(t) = the angular position of the end mass with respect to an
inertial reference.

The angular position cf the end mass is that due to the rigid body
motion of the beam, (), plus the angular motion due to the deflection

of the beam which is equal to the slope c¢f the beam,

s(t) = w(t) +-(t) (1.13}

where

A

—

e
[}

; uxt(t.L), the angular rate of the beam end due to

deflection.

Consequently the moment equation can be written as

- ~ ;- [ v
McbICL (t/+£(t/. 14
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System Moment Equation

The moment equation for the complete system can be obtained by

combining the moment equations for each individual mass. In order to

carry out this step it is necessary to write the expressions for the

applied moments on the main frame and on the beam. These are

respectively (see Figure 2)

MO(A’ S My - Mog (1.15;
and
(B) . . . \
Mo MOB Mc LfLy (1.16)
By adding all the moment equations (1.6, 1.9 and 1.i4) together and
utilizing eqs. (1.11, 1.15 and 1.16) the system moment equation can be
obtained, The result is
My = (Ig + Tgg + I+ m.L2) w(t) + Icé(t) +m La(t)
L X \
+ 6 xutt(t,x,:dx (1.17}

where the relation dm=:cdx has been used.

Boundary Conditions

Associated with the structural equation (1.8) are the following

boundary conditions: {see Figure 2)
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At x = 0
u(t,0) = 0

cantilever moment to mainframe (1.18)

I SO

MOB s -] uxx(t,O) (1.20)

..
DS LG

o ALY

u (t,l) = n(t) (1.2

-
—

gy (tl) = £(8) (1.22)

Y RICUSIDAT

El uxx(t’L) = -M (1.23)

Fly = EL U, (til) (1.28]

-

- Final Working Equations
ﬂf For the analysis which follows in the next section, it is useful to
!, rearrange the equations developed previously into a final working set.

We have the structural equation {1.8)

.

XA, SRR

utt(t.x) + xt) = -E

Elu,, (tx). (1.25)
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from the main frame moment equation (1.9), eq. (1.15) and the boundary

condition {1,20) '/e obtain

Iyw(t)s -E@ u, (t,0) + M, (t) . (1.26)

The end mass force and moment equations (1.1l and 1.14 respectively, in

conjunction with the boundary conditions (1.23) and 1.24) become

I(t) +4(t)] = BT u (t.L) (1.27)
and
m. [Lu(t) +n(t)] = EI U, (tsL) (1.28)

gquations (1.25-1.28) plus the remaining boundary conditions, eqs.

(1.18, 1.19, 1.21 and 1.22) are the starting point for the analysis in

the next sections.

11

.........



O [

R

. ‘o
B
Hl .". -

R .

X RO

TR N Y

n
AN
.

H

11. STATE-SPACE FORMULATION
The purpose of this section is to construct a state-space model for
the system dynamics. That is, we are seeking an appropriate state-space

Y so that the (linearized) equations can be written as

y(t) = ay(t) + Bf(t) (

~y

—

where f is the control and 4 and s are appropriate operators. In
addition we shall show that the operators A and 8 are sufficiently
"nice" that the system (2.1) is well-poced. This means that for
appropriate initial data (y(0)] and control input f, the system (2.11)
has a unique solution and that solution depends continuously on the

initial data.

The formal modelling procedure of the previous section resulted in

the following description:

utt(t,x) + x&(t) - -%l “xxxx(t'x) (2.2)
Ip9(t) = €I u, (£,0) + My(t) (2.3)
1.[0(t) + &(t)] = -ET u (t,L) (2.4

mc[L&(t) +7(t)] = EI U, (L) (2.5)
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In addition to these differential equations there are important

boundary conditions. Since the beam remains joined to the hub one has
u(t,0) = u,(t,0) =0 .

The cantilever nature of the connection also requires that
ux(t,o) = uxt(t,o) =0,

while integrity of the upper joint requires

u(t,L) =n (),

and

U (6L = g(t) .

As a first step in the state-space formulation observe that the

partial differential equation (2.2) can be re-cast as & first-order

system,

s lu. (tyx)2 = 372 [u (t,x) + x+{t)]
3t X b

(2.6)

3 ¢ . 1. 2 r -
;t[ut\t.X) + xey(t)] ETI Cu, (t,x)]

QJ
al
~)

a2

X

13
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This suggests that the functions (of x [uxx(t,x) and [ut(t,x) +
x*5(t)] are worthy of consideration as state components. With this

insight define a "state" z{t) by

w(t)
n(te)
zZ(t) = | &(t)
uxx(t'x)

u“ta)+xwu)

b -

Note that z(t) has five coordinates:

w angular velocity of the hub

n relative lineal velocity of the tip
12 relative angular velocity of the tip
Uyx curvature of the beam

Up+ X, velocity of the beam
The quantitfes w, ™ and & are each scalar while [uxx: ¢
are functions of the spatial variable x. Thus, the state-space can be
at least formally identified as

Z=RXxRxRx 22 X <,
where R denotes the real line and 22 is the usual Lebesque space of
real-valued, square-integrable 'functions' defined ¢ the interval [0,.]
'see [92).

14

and (u, *+ x-.
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It is possible to re-write the equations {(2.2) - (2.5) in terms of

the five components of Z and the control MA‘
I zl(t) = EI £ z4(t) + MA(t)

m. (L zl(t) + zz(t)] =[] ELooza(t)
(2.7)

I, [2q(t) + 23(0)] = €L £ 2,(t)

z,(1) = 0% 24(t)

: 2
Zs(t) = -§_I_ D Z4(t)

In these equations D denotes differentiation with respect to the spatial
variable x and Ey denotes evaluation at x = b. Boundary conditions

require that

(t,0) = 0,

L]

t

E, zs(t) ut(t,L) + La(t)

r{t) + Lw(t)

= zz(t) + L zl(t),

sooazs(t) = utx(t,o) =0,

15
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and

EL oDZg(t) = (t,L) + w(t) . L

utx

1]

23(t) + Zl(t) + L.

The system (2.7) is in the form
FE(t) = gz(t) + Hf(t)

In principle, this can be brought into the normal form (2.1, by
“inverting' F. It is, perhaps, somewhat easier to introduce a
coordinate transformation that 'uncouples' tne left hand side.
\ = i = ! \ { = v =
Let y. = z, (i =1, 4 and 6) while Yo =Lz * 2, and v,

z, + 23 It may be verified that the system (2.7) can be written in the

form (2.1} with

o -
1] 0 0 %i ) C
A
¢ 0 0 El _ _ ©
mC Le
A= 0 0 0 -El . 0 (c.e;
Ic L
g 0 0 0 z
0 0 0 } gg_ o 0
and L -

16
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o =
1
rA
0
0 (2.9)
B =
0
0
[
The boundary conditions are reaiily translated to
EO ys(t) = 0
Eq ooyglt) = 0
EL oD,Ys(t) = .Y3(t)
These conditions are incorporated by restricting the domain of the
operator A to
(n) = {{yys ¥Yp» ¥Yar ¥ ) e RS x 2, x : (
' 1* Yo Y30 Ygo» y5 ) ) o
- NZ,Z _ oL fnepn
Ygr Y5 € , yS(O) = 0, ys(L,l = 7, 20

\

y5(0) = 0, y5(L) = y3t.

w2'2 is the uwual space of real-valued functions with the function «rcd !

its derivative in L2[l ). As a distance measure on the space Y we

introduce the inner-product

17
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(
+ 6L EI yu(x) wylx) dx be 2 ygix) welx) dx

+

—

It can be verified that . 1Y = *<¥,¥> is a norm and that Y is a ‘hlbert
space. The inner-product -y,y> is the mechanical energy in the physica!

system at state y.

At this point we have constructed a system

with state-space Y = R3 X Ly x Lo inner product <, = [given by (2.11).
and operators A and 8 [given by (2.8), (2.9) and (Z.10;]. The final
part of this section is concerned with establishing that this system
makes sense. Formally one can write down the solution to (2.1} in terms

of the variation of constants formula

Since 3 is bounded, the solution y will have the desired properties
fexistence, uniqueness and continuous dependence on initial data) if,
and only if, e'qt is a Co-semigroup. Hence, we niust show that an A
operator "generates" such a semigroup. This is the central matter in
abstract furmulations such as {2.1).

Over =hn 1. su thirty~-five ;ears there has been significant prcgress

in charact. ~i: " iw *hose operators that are generators of semigroups

ig




[4,7,127. We shail make use of a special form of the Lumer-Phillips

Theorem (7.

Theorem (Lun<r-Phillips): Let A be a denseiy defined,
*
ciosed linear operator. If both A and & are cdissipative,
then a4 1s the generatcr of a Co semigroup of contractions

on Y,

To employ this theorem we must demonstrate that the s defined by
(2.8, 2..0; satisfies the hypothesis. The fact that 2 is closed and

dersely defined follows from standard results in - theory (9..

Lemma £.1: The operator A constructed above is dissipative.

Proof: We must show that «y,ay> - 0 fer all y - o(a)

1

Direct calculat:on reveals that

S > :‘;[ EI— (O‘
AN 2 Ayl IA.V4\/
1 El . .
YoM Yo o vy (L
C
1, {~EQ)
f’z_ lC J}Li‘c_lljn [
1 oo L [
vy b 6 yair) yilx) ax
* % ot SiA Bl i Ox
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After elementary caiculations it is Seen that each term has a3 common
factor (% EI). The last two terms are each integratecd by parts to

produce

2 / '
_11€Tﬁ13 = ylyQ\O) + yZY4(L) - Y3Y4(L)

+ (g (Lyg(L) - yg(0)ys(0) - SL Y4(x) yi(x) dxi

- lyg(L) y3(L) - yg(0) y4(0) - éL y&(x) ya(x) dx}

The integral terms cancel and the remaining terms can be gathered to

yield

2« AY>

S = 0y - y5(0)] + yi(L) Ly, - yglL))
tyg(L) Dyg(L) - y3] + y5(0) [y5(0)]

It is now easily verified that for y in the domain of [see /2.11)] each

0¢ the bracketed terms is zero so that

<y’Ay\=0

Note that we have, in fact, shown that the operator is conser-
vative. Since our norm is related to the energy we have simply verified
that the energy is constant {for the uncontrolied system,. Tc compiete

the hypothesis of the theorem we must verify that the adicin: operator;'

is also dissipative, In fact we shall show more.

20
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.emma 2.2. The operator sis skew-adjoint.

Proof: Recall that the operatom'is defined on its domain

L]

» w
D(a ) = {w/there existsw ¢ I such that <ay,w> = v,y = = 9

for all y € p(A)}

by

We use this characterization to compute Al
Let y = col (y},¥5,¥3:¥4(.),¥g(.))e D(a) and assume w =

* »* » * » >
1/ 3 = { Y r
co.\wl,wz,w3,w4(.,,ws(.))and W col (W, W, W, wa(.). w (.)) satisfy

*
0 FAYIND e YWD

Using the definition of A and the inner product <,~ we obtain the

identity

0 = [yg(0)(Elwy) *+ ¥4 (L) {Elwy) - y4(L) (Elw)
+ El "Lb"(x)w (x)dv - EI;’L “(xdwe (x)dx ]
'O 5 q 0 Y 7 5\

*

T ylIa gy s yplmengi + vy(Tcwy)

NI

yalxiwgla)ay + o 17y (Owixav D
O - '

’
w

21
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Collecting terms and applying the conditions that yi = yé(O). Yy % Y (L),

¥y = ys(L) and ys(O) = 0, this equation becomes
0 = yqa(0) (Elwy ) + y (L) (Elwy) + (L) (-Elwy;

* y5(0) (~1gaw]) + yg(L) (-mow3) + yolL)(-1 w3)

c
gt (Elwg(xl) + yglx) (ouglx))] o
‘L " -~
* [ ya(x) (-Elwg(x)) *+ yo(x) (-Elwg{x);  dx,

which must hold for all functions yd{x), ye(x) in the Sobolev space

”Z(O,L) {see [1]). In particular, this equation hcids for yi{x) = 0 and

\ isfyvi . z yv'(A) = yv' = v (L)
y.(x) satisfying yJ(O) yJ(J) YJ(L) JJ(L)

1
v

0, i,5 =4,5 which

implies that

PL " ’ vy
< yg(x) (EIwy(x)) + yg(x) \-:wg(x;zJ dx = 0
and

L

o Yatx) (Elwg(x)) + yu(x) (-EIwg(x})2 ax = 0.

The fundamentai Lemna of the Calculus of “ariations iralies that

2

A

w4{., and ws(.} belong to «

(0,L) and




w;YX) = w;(X)
and

EI w;(x) 2 wg(x).

! Substituting for wy(r) and wg(x) in the integrals and integrating by

parts, the eguation

0 = <Yy,w> - <y,w>

. becomes

¥

0= ¥4(0) (Elwy - EIwg(0)] + y,(0)(EIwy(0);

T W

* ¥4(0) [EWG(0)] + yg(0) [-EIwy(0) - 1,7]

* (L) Loy w EG(UT + yg(L) £t - i w3

+ y&(L) [EIw2 - Elwg(L)] + yé(L) [EIw4(L) - Icwi],

which must hold for all values of y4(0). yi(O),y4(L}. yé(L), yé(O),

yeill, yé(L) and for y5(0) = 0. Thus, it follows that

we(0) = wy, Wgll) = wy, we(L) = Wy, we(0) = 0
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and
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—

NI = -El w,(0), w3 = rﬁE_l_ W (L), w

l
x
F N
_‘:

*
3

—
o

c

Therefﬂre, if w CD(A.), then w = C°1(w11 wz, w3v N4(.), ws(-) is such

that wy(x), we(x) e 0l (0.L7 with wy _wil0), wy = weil), wy = wi(li, 0

3 wS(O). and

* \ ' VAR AV - AV
AW = Co] (-ﬁ W4(O), #\Vd(L),ﬁ W4(L), ’WS(X/, I wd\x,, x “AW.
Cc

Ty 3 T

Conversely, it is easy to show that if w is as above then wc2(4 ) and

4

A w = -Aw, This completes the proof that D(A") = »p(A) and

a'w = - aw n particular, Ais skew-adjoint.

Combining Lemmas 2.1 and 2.2 we have established the following.

Theorem 2.1: The operator defined by equations (2.8) and
(2.10) generates a Co semigroup of contractions on the state-
3

space Y = R x I, x1L

2 2’

We have verified that the state-space model assembled from the

formal system does indeed make sense. Before closing this sectior we

note that the angular coordinate s may be appropriate in the control

problem,

That is, we want to add a "zeroth" state, with equation i(t}

24
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w{t). To avoid duplicating much of the previous work, we shall do this

by dugmenting ihe state and "perturbing” the A operators.

Let Z = R x Y and consider the dynamical system

2(t) = 4 2(t) + Af(t)

with
..Yl 1
A (a,y) =[Tay”
1
) o
B B
and

p(a) = { (a,y) e RxY acRandye n(a)

The inner-product is extended in an obvious way

< (z,y)s (3,w) -2 =28 YWy o

“ 2
It is clear that one can write A as a sum

where

and

25
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[t can be easily seen that Ay generates a contraction semigroup on 2.
The proof is exactly the same as that used to demons*rate that A
generates a contracticn semigroup on Y, Also it is clear that A1 is a
bounded linear operator. A standard result [7, p. 76] can be used to
conclude thatﬁ generates a Co semigroup on Z. It should be noted that
A is not conservative and hence |[z(t)|! will not be constant in the

unforced case. 5 is obviously bounded.
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ITI. THt CONTROL PROBLEM

In this section we formulate a general quadratic optimal contro!
problem for distributed parameter systems and then review those results

that are important for developing approximation and numerical schemes

for computing feedback gains. Let Z, U and A be real Hilbert spaces.

We uyse the symbol'<,> to denote the inner product in each space. The
space Z is the state space, U is the space of control inputs and . is

the space of outputs (observations). Furthermore, we assume that A with

domain D(a)& Z {s the generator of a strongly continuous semigroup eAt
onZand 8: U+ Z and v: Z - A are continous 1inear operators. We
assume that R: U+ U is continuous, linear, self-adjoint (i.e. r = g&*)
and [!r|] > m > 0. Moreover, we define 2 = v”v

The distributed parameter control system is governed by

z(t) =az(t) + su(t) (3.1)

with output

y(t) = vz(t) (3.2)

Given Z,, the (mild) solution to (3.1) satisfying z{o, = z, is giver by

the variation of parameters formula

2{t) = eAtz0 — eA(t's) 8 u(s) ds . (3.3)
0

27
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We consider the probiem of findingu(.) ¢ LZ(O,T;U) which minimizes

i

SRE* ) C P e i)

J(u) = E;T (<oz(s), z(s)>* <r u (s), uls) ») ds | (3.4)

where Z{t}! is given by (3.3) for 0% t< T. This problem is the most
direct extension of the standard finite-dimensional linear quadratic
I control problem.

It can be shown (see Gibson [31) that the aptimal control u*(t) is

state feedback. In particular,

b
:4 . '1 * ‘
i u*(t) = « R ° 3 7(t)z(t) , 3.5)
i where T(t) : Z -~ Z is the solution to the operator Riccati integral
- equation
- T{t) = €T-eA' (n-t) o - n(n) s~} 8"1(n)] eA{n-t) dn . (3.6)
B It is important to note that in general (3.6) cannot be differentiated
f: to produce a Riccati differential equation, This lack of "smcothness”
» is one reason that numerical methods for computing approximate (sub-
optimal) gains have to be carefully designed.

Another feature that is apparent from (3.6} {s that the adjoint

5_ operator a plays an important role in determination of ~(t). For

infinite-dimensional problems such as structural control, the operator a

e »
o

is a differential operator. [t is not a continuous operator, The same

28
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is true of 2°. Any approximation scheme used for computing sub-optimal

gains must be based on a numerical algorithm that produces good
approximations to A ggglﬂ'. This turns out to be a crucial point that
is often overlooked in finite element and modal! control approaches to
thcse problems,

As we shall see below, computing numerical soulutions to the Riccati

e
o
e
o
-
g
.

equation (3.6) involves solving non-linear mixed integral and partial
differential equations. This is a highly complex problem. There are

other methods for computing the gain operator

kK(t) = R 8 n(t)

N ————

directly. One such method, the Chandrasekhar algorithm, is ideally
suited for these infinite-dimensional problems. In particular, it can
be shown (see [8]) that the gain operator can be found by solving the

coupled Chandrasekhar integral equations

where x{t): Z - U and z{t): Z - : are bounded strongly continucus

operators.

In many applications equations ‘3.7) - (3.8) are less difficult to

solve numerically than equation (3.6). This is particulariy true for
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problems with a fixed finite number of sensors and actuators. Such
problems occur in realistic formulations of structural control problems,
and result in finite dimensional control and observation spaces, i.e.
U=R™and s =RP,

In order to illustrate the potential advantages of the
Chandrasekhar algorithm, consider the control problem for the structure
described fn Sections 1 and 2. The state space is Z =R% x ;, (9,L)

X LZ(O,L). The Riccati cperator ii{(t): Z -~ Z has the form

-

- . A

where

Taglt) fs a 4 x 4 matrix and 7. (t) have the representations
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and
[6.0.) oy (toxat) ap,(tor) ] [or(e ]
@1\- L all 3 Xy T 112 WXy T) '-1 T
fp(t) (x) = d-
L95(.) ] o Learlteat) apltian) | f a0

where Piv Qi Ty» Sis aij i,J =1,2 are all Lo functions. The Riccati

equation (3.6) becomes a coupled ifntegral-partial differential equation

that must be solved to determine the 16 entries in ﬁoo(t) and the 12

functions Pis» Qys Ty §; and @iy for i,j=1,2, 0< t< T, 0< x, < L.
On the other hand since the aoperator 8 = col (O,l/IA.O.O.O,O)

. ., -1 .
has rank cne the gain operator #(t) = & "8°(t) has rark one and K(t, has

the form

~

L. L.
k(t)z(t) = "i(t)zi(t) + 6 Ks(t,s)zs(t.s)ds + K6(t,s)26(t,s)ds ,
0

i

N e
—

or equivalently,

K(E)2(t) = K(8)3(E) + Ky(t) w(t) + Kylt) = ()« K (t) © (t)
" Kg(tslu,, (ts)ds s 5L Kg(thsi{u,(t,s)las (3.9)

in order to determine the gain operator it is sufficient to determine

the 6 functions Ki’ i=1,6. The functions K.{t,s' and KG{:.s; are

called the functional gains.

These functions are linear combinatisns gof

)

31




. qi(t,s). Note that the functions:&i;, Piv Tir Sio ia},Z are not needed
J

i i
% to define the gain operator.
- . . P
' If the observation operator v has finite rark, say+: 2 ~ R,
- then Z{t) has the form
:A. d . R )
- t(tdz s | Atz b Ag(t,s)zg(sids o Agft,s ze(sias
I ]zl 1 1 0 o} 2 .

[
LN
[
b,
[
r.
[
.
i
i-
o
f

»

where the functions ii(t) take values in R”i = 1,2,3,4 and ii(t,s}: rP
for i = §,6. In this case the Chandrasekhar equations involve coupled
integral-partial differential equations to be solved for the 6 functions
ki(t), Ki(t,s), 0< t<T,0< s< L and the 6'p functions that are the

-

entries in the RP valued vector functions ii(t), Ai(t,s)- for 0< t< T,
0< s< L. The main point to be made here is that the spatiai dimension
of the equations (3.7) - (3.8) is one, compared to equation {3.6) which
has spatial dimension two. This reduction can be substantial when cone

attempts numerical solutions of the equations.

Perhaps the simplest way to see the real advantage of the
Chandrasekhar algorithm is to apply it directly to the fi-ite dimen-
sional approximating system. An example cf this type will be giver in
é’ Section 4.

In order to obtain approximate soiutions to the Riccaty equatior
;Z {3.6) or the Chandrasekhar ecuations (3.7) - (3.8, it is necessary tc

*
o approximate the opgratorsa, & ,

tn

-
v R, vandsy . The most difficult
aspect of this problem is the development of convergent apprcximatior

schemes for s and A" we sha!l need the following cdefiniticns.




Cefinition 1. An approximating sequence for the con:rol problem definea

by equations (3.3) - (3.4 is a sequence (AN. Br) V'k RN} such that.&N

]

* N
BN, r N and oM. D’N] vl are continuous linear operators satisfying

v N N . !
I Rl »m> 0,0 {5 non-negative definite, 8Ny~ 8y and *Mu ~ Ry for

all u= U, $Nz =<z for all z< [ and the operators AN generate strongly

N
continuous semigroups e 't satisfying

e 2 +~ e"72 {3.11,

for all z¢ Z, uniformly for t€ [0,T)

An approximating sequence is said to be a strong approximating sequence
. . (N3t Ny* e
1¢ the semigroup e“" -  generated by [A"] satisfies

Na¥ *
e [a ]tw . AL,

for all w € Z uniformly for t < {0,T]

The construction c¢f approximating sequences for the control preblem
3.3} - (3.4} is a problem in numerical analysis and approximation
theory. The basic idea is to approximate the (differential; cperatcr

by a finite-dimensional operator AN (i.e. using finite elements, finjte
differences, modal truncation, etc.) and then showing that AN converging
to A implies (3.11) and (3.12). This is a nontrivial problem in

N

functioral analysis. In fact, the basic guestion (when does 4, = Az

impiy {2.11}) and {3.12)) is not yet fully understood. A partial answer




to the convergence question is provided by the now famous Trotter-Kato
Theorem [11]. Although there are a number of extensione of this theorem
(see Theorem 3.1 in [2]), we state a simple version that is sufficient

for the problems considered here.

Theorem (Trotter-Kato). Let 8 be the generator of a strongly

continuous semigroup e’ satisfying eftry « MePt Assume that AN s

N
a sequence of operators generating strongly continucus semigrcups e A t

satisfying.

1< Me™ . N=1,2...

5 N .
M)Az - az forz ¢ D, 0 dense in 2

iti) there exists Ag With Re( xo) > 8 such that (A-\OI)D is dense
‘,N -
inZ, Then e'Z ~e*% for all z ¢ Z and the convergence is uniform for

t < [0,T].

In terms of numerical analysis, condftion i) is the stebility require-‘
ment and condition {i) is tre consistency requirement. Thus convergence
of the approximation scheme is dependent upon having a consistent and
stable numerical scheme that also satisfiec the technica' condition
11i). Any numerical scheme that does not satisty conditions 1} - §4i)

will not produce an approximating sequence for the contro! problem (3.3,

- (3.4). Moreover, even if the approximating sequence is such that i' -




i11) are satisfied, there is no assurance that 1t will be a strong
approximating sequence unless the operators [AN]* and a~ alss satisfy i,
- 111),

The fcllowing convergence results are the basis for numerical
algorithms for computing sub-optimal controls. The fundamental results
are due to Gibson [3]. Powers [8) modified Gibson's results to apply to

Chandrasekhar algorithms.

Theorem 3.1. Let (AN, BN, vN, RN) be an approximating

sequence for the control problem (3.3) - (3.4). Let nN(t)

pe the solution to the Riccati equation

) = - M R - e - ot - oM

+ nNaN[RN]'1 [aN]' nN(t). 0>t>T, (3.13)
with

HN(T) = oN (3.14)

i) If n(t) s the solution to the Riccati integral equation (3.6),

then for each t ¢ [0,T), z ¢ Z, RN(t)z weakly n(t)z.

——.

i1) If the approximating sequence is a strong approximating

seqguence, then EN{t)z - n{t)z.

35




i19) if, in addition, the control space U i5 finite dimensional

and vz » vz for z€ Z, then for O<teT
) - kel - 0, (3.15)

where

¥(t) is the gain operator defined by (3.7) - (3.8) andFTN(t) is the

solution to the Chandrasekhar equations

\
& M - - MM e M (3.18/
0 t< T
é% Ny = =My al - 3Ny, (3.4
with
tMey s MNang Hemy = o (3.18)

A proof of this theorem will appear in a forthcoming paper. How-
ever, it is clear that from a practical point of view it 1s desirable to
have uniform convergence of the gafn operator {i.e. (3.15)) rather than
weak convergence. Therefore, considerable effort should be devoted to
constructing strong approximating sequences that have the additional

property that AR . Such schemes are needed toc ensure uniform con-
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vergence of the approximating gain operators KN(t) (obtained form a

finite dimensional Chandrasekhar algorithm) to the optimal gain operator
K(t).
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IV. NUMERICAL PROCEDURES

We have seen that the dynamics of the physical system can be
formulated as an abstract model. A control problem has been stated and
its 'solution’' given without introducing any approximations. In
particular, for the linear quadratic problem of Section III one knows

that the optimal control can be given in feedback form as:
My(t) = Ky (£)a(t) + Ky(th(t)
+ Ky(tin(t} + Ky(t)e(t)

L
+6 Ks(tvs)uxx(t)S) ds

L
4-8 Ks(t.s) Ut(t.s) ds

The time-varying gains K;, including the 'functional-gains' K5 and Kg
are computed from the ‘solutions' of the Chandrasekhar Equations (3.7,
and (3.8).

Calculation of these gains requires approximation of 4 gggA' as
discussed in Section III. In this section we shall discuss some details

for constructing these approximations. Since for our problem 4 = - a4

one need only consfder the task of approximating a. It should be noted

that this simplification is not generally possible,
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Recall that our state-space is Z = R4 X Ly X Lo and it is clear

that this space is infinite-dimensional because of the LZ "functions"” in
the Z5 and 26 coordinates. One useful way to think about constructing
the approximates ofAN is to imagine finite-dimensional subspaces ZNCZ z
in which the 'functional coordinates' are approximated as linear com-
binations of elementary functions. The choice here is to use splines
[10].

Specifically, we take the interval [0,1] and divide it into N equal
subintervals with (N+1) 'knots' at x=0, 1/N, 2/N,...,1. Consider a set
of interpolating splines with the property that @?(J/n) = fiJ’ The
degree of these splines 1s not yet specified; in practice one might use

piecewise 1inear (hat functions) or piecewise cubic elements.
Define e} € 2, 1= 0,1,...,N, by
el = (0, 0, 0, 0, @iN(x/L), 0)

and for j = 1,2,...,N let

N .o, oY N
eN+j (oo @J (0)» l3"](1)1

.N N
¢ (1), 0, 53 (x/L))
J J
T r

Finally let e’y (1, 0, 0, 0, 0, 0) and eNI- (0, 1, 0, 0, 0, 0)
The set EN = qﬁ? qﬂr.... ﬁ;)(i Z 15 1inearly {ndependent and

hence its span is a (2M3) dimensfonal subspace of Z (say span EN s ZN‘

J e
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For ease of exposition let N0 denote the set N, = {0,1,2,...,N} and N1
denote the set Nl'(1.2.3....,N).

Note that the basis EN has been arranged so that each eﬁ satisfies
' the boundary conditions needed to be inp(a). The ease of this con-
struction is a favorable result of our choice of state-space. That is,
one could have eliminated the coordinates 23 and Z4 (n and 2) by
id ntifying n(t) = U, (¢,L) and £(t) = Utx(t'L)' However, it would
then be necessary to incorporate equations (1.27) and (1.28) as boundery
. conditions in the domain of A. This greatly complicates the task of
] constructing basis elements.
. Continuing with the numerical aspects we shall display a matrix
- representation of AN in terms of the basis EN. Let ;ﬁ P 2+ ZN denote

the orthogonal projection onto ZN and (formally, write AN =p NA JY

The Jth column in the matrix representation of AN will be the image of

the Jth basis element under AN, represented in terms of the basis EN.

Since ANe = PNAe, the representation amounts to solving the usual norma!

equations (see [10]) for the best approximation of Ae in terms of the

9
basis EN.

Ty IR
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Straight forward calculations reveal that

®
N A )2 = £, A eﬁl =col {1,0,0,0,0,0],
[
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0
El %1 (0)
In
Ae:' . EL % (1)
mcL
ieN -El %5 (1)
0
T
0
:-gl- Oiil
oLz
— J
and
i 7
0
0
N
A%+j " 0
J'ch 0
1\@ ()
b J
— 0 —

Note that we have supressed notation indicating the dependence of
the spline functions °1 on the grid size parameter N, Also observe that
one could approximate the second derivative operator (e.g. by differ-
encing the first derivative) and hence a]]ow‘AN to operate on functions

not smooth enough to be 1n\42’2. This would be needed, for example, if

the ¢, were linear splines.
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The normal equations are of the form
(4.2)

N N

element <ej » €77

where GN is the gram matrix with (1,]) and RN is the

matrix with (i,j) e]ement<e'¥ ’ AeN

i From the form of the basis

vectors it is readily seen that:

i) e_N2 and e_Nlare each orthogonal to the remainder of EN ;

11) < e.Nz, e.Nz > = 1/2 N
oy < NN Ty
ifi) ey, ey = 2
2
iv) each e s orthogonal to each eh i e N JeN
’ i . N+j P 0’ 1

Hence GN is block diagonal and, in particular

M=z | P 6 7
| ¢ : 6y

Direct calculations reveal that
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0 IA ,
6] (1.3) =2 <ef L ef>
sl /N (s) i, ds
: 1,5 ¢ Ny
g and that
: i e N N
'-. Gz (’:v) 2<q_{*1 ’ m“"j)
|
- - o3 14 e (0) ' (0)
oL3
i + Mc 4 (1) & (1) (4.3)
. o) J
: + Ig et (1) o (1)
- ofj L J
’ L
y + 6’ ¢1(s)¢J(s) ds:\
1,J € Ny
4
. Note that the choice of B-splines, which are non-zero over only a
=
l: ‘small' portion of the unit-interval, means that the GN matrices will be
[
’." banded. The band-width increases with the degree of the sglines.

b
[ ]
-
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Assembly of the RN matrix proceeds in much the same way with

RN(i,J) = <e? 1A eﬁj> . It is easily shown that

0
(=)
OZ
o™
—

D

RN = 172 5 8 RY (4.4)

with

o2
OZ
n
—
[N =)
O
[ — ]

N -
Rol a [ET-:J-IOS] ((§e Ny

' R 2201 - 2, (0) 5(0)
1 €73 (1) 50 (0 0:

and RV = RNIT,
2 1

The block structure of GN and RN suggest a compatible partitioning

of AN in the normal equations. [t is readily seen that
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The banded structure of Gﬁ and Gg suggests that a Cholesky factoriza’

may be an efficient way of generating the A: matrices.

It is convenient to gather dimensional factors and write

o -+ (e &, oM - (o) &', and R': . (EI/L) 3*1'

With this notation it follows that

N Nn- “NAT
ay = et - )




ey

O AN -3 KRR

Formally then for any N the system (<.1) is approximated by

N

N
N( N

x(t) =a x(t)+8 MA(t)

where AN is as above and BN is found by projecting s onto ZN.

The approximating solution is found from the Xy coordinates as

2M(e) = [ x;(e) e

The vecturs xN and zN are each of dimension (2N+3). The calculations
necessary to generate AN are easily dene on a computer once the o?
functions are selected.

In order to illustrate these ideas a FORTRAN code was conStructed.
The code assembles the matrices required to evaluate the Chandrasekar
equations (3.16) - (3.18). Sincé many of the matrices can be Qquite
sparce, the code employs partitioned versions so that most ¢f tne zero
entries are not involved. For jllustrative purposes the basis functiors
are 'linear splines' [10] and all physical constants are taken to be
unity. The output operator v in equation (3.2) "reads out" the first
four state components {i.e. 3(t),.(t), a(t), «&(t)}; it “samples”

zs(t; = uxx(t,x) at x = .2 and x = .4; and, it "samples 26(t; =

‘ut(t’x’ + xw(t)) et x = .3 and x = ,7. Thus, .. has rank 8.




The differential equations (3.16) and {(3.17) were numerically
integrated backwards from the initial condition (3.18) for 10 time
units. It was observed that the dependent variables % and LN were
changing very slowly at that point and so these were taken to be
"steady-state" values. Shown in Figure 3 are graphs of the kernel
function Kg(x) [cf equation 3.9] for N = 4 and N = 8. These results are
somewhat preliminary. [n practice one would continue tu increase N at
least until the observed differences were "small". Our research code
had modest dimensions for the various arrays and so the maximum
permissible N was rather limited. Note that with N = 8 the matrices

N and LNin equations (3.16) and (3.17) are 1 x 19 and 8 x 19,

respectively.
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V. THE TWO BEAM STRUCTURE

In this section we develop the equations of motion of the structure
shown in Figure 4, It is assumed that members at the top and bottom are
rigid bodies connected by two flexible beams of identical length L, the
structure 1s allowed to pivot about a fixed pivot point, and that the
motion is in a plane. The development 0¢ the model is achieved by the
same method used to derive the equations of motion for the single beam
with a tip mass, Since thg derivation is very similar to the deam-tip
mass problem, we shall simply summarize the equations beluw. '
Y

Let u t,xl) and uz(t,x‘) denote the position of the mass element

dm with respect to its undeflected position on beam 1 and heam 2,
respectively. The angle y(t) denotes the rotation of the structure
about the pivot point and ¢(t) is the angle of rotation of the top body
measured from {ts undeflected position. Le: 8 denote the fixed angle
that each beam makes with the bottom rigid body and note that (see the
Free Body Diagram in Figure 5) .

sin @ = h/L , cos 8 = (A-C)/2L. ' (5.1)

Using the Free Body Diagram in Figure 4 we obtain the following set of

equations,

Bottom Rigid Body

- - S+ in & + 6 - f in &
fxlcos g+ f sin fx cos ¢ y sin

1
+
-

L'}

o
—
wun
(A%
~

D
+
-
"

(=]
—
wn
W
~—

-f sin ¢ - f cos & -f sin ¢ ~ f cos 2
Xl yl X4 y4 p
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. f - ) + A { -f g ¢+ +M
Mao * A2 ( X1 fx4,sine /2 \f“ “)cos My (5.4)

* Tacw ¥ (1)

fo * Fe, = ) w(t) (5.5)

Ah
BZ
R R R TI
1

+u

(6] (5.6)

A ) A4
My - M+ nyz [y, -7 (A-C)myJ ¥ (t) - I.1Ko (t)

+ s oxlultt(t.xl)dxl (5.7)
[o]




........

Top Rigid Body (mass = mc)

(fx3-fx2)cos 6 + (fyz-fy3)sin 6 =m. h(ke (t)-y (t)) (5.11)

(F +f )sin o + (f +f )cos 6 = 0 5.12
X2 %3 Y2 Y3 (5.12)

C , C
(M2+M3) +t3 (fxz-fx3)s1n 8 + 3 (fyz-fy3)cos 8

ICCM [‘W' (t) + .QJ. (t)] (5.13)

Observe that equations (5.4), (5.11) and (5.13) can be combined to

produce the algebraic equation

cK - 1+K)A sin @
GRE - =) (f, - ) + gKAsing ¢ ¢
meh 2o’ Y3 v

ACM X1 %4

. ¢sing 1+K)A cos 6
= (ﬁ—ﬁ- 2HEEE) (fy3- yz) + i~z—%—————- (f -f ) (5.14)

ACM g N
o el IR VR ORI S
ACM CCM ACM
Let ?&, ?; denote the column vectors ?& = col (f. ,f f ) =

1 ] 1 ’f
.Yl .VZ .Y3 .V4

T ‘ T
(f, of, f f ) and T = col (f ,f ,f ,f ) = (f. ,f. .f f. )
Y1 Yo Y3 Yy x 3 % X1 %2 %3

respectively. Combine the algebraic equations (5.5) (5.8) (5.12) and (5.14)

intc the one linear equation
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L I

Hf, = NF, + R,
where
1 1
0 0
0 sin @
(1+K)A sin 8 =(cos O +.LK)
¢Iacm mh - 2pem
-
-
0 0
0 0
0 -Co0s 8
-(1+K)A cos 6 -(sin 8 €K )
lpem mh 2Ty ey
.
and
51
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(5.15)
0 0
1 I
(5.16)
sin 6 0
(cos @ CK) -(1+K)A sin ®
R ol J-zr)—
c ACh ACM
.
0 0
0 0
(5.17)
-Cos 8 0
(sin 8 _ CK) (1+K)A cos ®
mh 2oy ACM
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~- 7 3 T
T- UL (t) 0
E - mzAh . 0
- (Y +
0 0
-(1+K)M
~{1+K . K AC
(M, + M ) - (M + M )
5 §ACM P T Tew 2 CThon -

.......

We note that M -1 exists and therefore ?g can be determined as

a functicn of 7& and R. In order to complete the model we need to

(5.18)

provide equations for the elastic motion of the beams and the corresponding

boundary conditions. These equations are;

l 1 .8 o &
b)) - T () - K (0]
- 2 2 e .o
oplendy <L 2 (ead) - FV () - K8 ()
o/

with boundary conditions:

L elpl l

at x1 =0 f = Elll ul

Yy xxx(t'o)
ul(t,0) = 0
ul, (£,0) = Ke(t)
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5.19)

5.20)

(5.21)




= gllyl
My = et (e,

a | f - Elllulxxx(t’l') (5,22)
Y2

at x
ul(t,t) = o

uh (6L) = (1-K)a(t)

Mg = EG1A2 (¢,0)

. £2:22
at x© = 0 frg = BT (:0) (5.23)

w2(t,0) = 0

W (6,0) = Ko(t)
2.2 2
My = E°I% xx(t,L)

L £ w g2122

uz(t,L) = (

Coltil) = (1%K)g(t)

Let z(t) denote the vector
2(t) = ((e)Wlt)s ul (6,0 0000),5(8), B (t)), WBy(t, )]

and note that z(t) [R2 X L2 (o,L, Rz)]z. Therefore, the state of

the system 1s described by four functions ¢, ¢, Y, b and four L2

valued function u1 ’ ul s u2 R u2 .

XX t XX t
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Equatfons (5.19) (5.20), (5.4) and (5.11) can be written as the

first order system

Fz(t) = Hz(t) + 6 Mac(t) (5.25)

where H is a boundary-differential operator on 2 = [sz Ly (o,L, RZ)]

X [R2 x L, (o,L, Rz], and F is a bounded non-singular operator. Let

A= (FlH) 8=Flg (5.26)
and define

D (A) = {z2el / z satisfies Hll (5.27)

where 2z = (Zl, 22, 23(.), Z4(-)o ZS’ 26’ Z7(-)v 28(-))

and H) 1) 230.), 24(.), 24(.), zg(.) all belong to WE+Z(0,L).

1) 24(0) =0 » 2y (0) =K zg
111) z,(L) = 0 » 25 (0) = K zg
iv) zg(0) = 0 » Zg (0) =Kz
v) z2g(L) = 0 » zg (L) = (1+K) zg. (5.28)

The specific form of F, H, G, A and B can easily be constructed
from equations (5.4), (5.11), (5.19) and (5.20) by combining equation
(5.15) with the equations (5.6), (5.7), (5.9), and (5.10). As in
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the problem with the single beam, it is necessary to show that the
operator a defined by (5.26) - (5.28) generates a dynamical system

on Z . Numerical algorithms will be similar to the one in Section

4 above.
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Figure 4: Prototype System




Figure 5: Free Body Diagram
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PART 11

_ EFFECTS OF TIME DELAY, ACTUATOR DYNAMICS
N AND SYSTEM DAMPING CN THE FEEDBACK
’ CONTROL OF A FLEXIBLE CABLE




-

s s Ao { MIRIAMACHREN  SURRILARAY \ RATIRAER

o and o s augt e o
MR
[EREEREEN

An Example of the Lffect of Time Delay on
Systems with Feedback which are Governed by
Partial Differential Equations

I. Introduction

The purpose of this work is to offer some insight into some
problems associated with the design of controllers for systems governed
by partial differential equations. The method of analysis is based on
the concept of transfer functions which relate the output or response of
a system to the input. For simple structures, the displacement
(velocity, or slope) can be related to the force appiied by an exact
transfer function. The accuracy of the transfer function {s Timited
only by the accuracy of the mathematical model used to describe the
structure. This open-loop transfer function can be used to construct
the closed-loop transfer fFunction ‘for the case where the displacement
(velocity, or slope) is fed back to the force. By examining the
characteristic equation of the closed-loop transfer function the
stability of the closed-loop system can be analyzed. This method will
be applied to a flexible cable under tension.

It should be pointed out that although only a simple cable mass
element will be considered here, the procedure can be used to examine
more complex structures [1]. The advantage of the formulation used here
is that i1t provides information in the form of root locus plots which
are familiar to most and hence adds to the physical interpretation of

the results. The inclusion of time delay in the problem does not change

the method of analysis.
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It is likely that in the near future almost all control systems
will be digital in nature. Consequently the control command will always
respond to the sensor inputs with a delay of at least one interval of
sampling time associated with the controller., The contention to be
demonstrated here is that regardless of how small this delay may be, it
can cause some instability in systems with feedback. Because of its
simplicity and familiarity, the analysis will be applied to the cable

problem as indicated previously.

1I. Flexible Cable Analysis

The vibrating cable is considered to be a continuous or distributed
parameter system, that is, one governed by a partial differential
equation. As shown in Figure la, f(x,t), P(x), and T(x) are the
distributed force, mass density, and tension in the cable, respectively,
expressed as a function of position, x along the cable. For this
analysis, negligible structural damping and no transverse stiffness fis
assumed.

The equation of motion describing the transverse motion of the
cable can be obtained by examining a differential element of the cable.
Figure 1b represents the free body diagram corresponding to a
differential element of cable of length dx. Applying Newton's second

law in the vertical direction, assuming small deflections, only vertical
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motion and 1gnoring second-order terms in dJx, we find that the guverning

partial differential equation of motion of the cable is given by [2]

2
3 (100 2ty « st 000 EUYE o cx e @)

While Eq. (2.1) 1s the general equatfon of motion of the cable, it can
be simplified by certain appropriate assumptions. In addition, any
solution of £q. (2.1) will depend on the particular boundary conditions

of the cable configuration under consideration.

Fixed-free cable with a discrete mass at end

The configuration to be investigated is a cable of length L with
constant mass per unit length, o, subjected to a constant tension T.
This cable is fixed at one end, while the other end is free with a
concentrated mass attached. A control force is acting vertically on the
mass at the free end. Furthermore, there is no distributed force f(x,t)
acting along the cable, (see Figure 2a). For this particular problem

Eq. (2.1) reduces to

2 2
"y(x,t 3 y(x,t
o =T_J_(_§_). , 0 <x <L (2.2)
ot

ax
with the associated boundary condition at the fixed end x = Q,
y(0,t) = 0 (2.3)
By writing Newton's second law for the free end, shown in Figure 2b, the
boundary condition for the free end x = L becomes,

2}
ay(x,t = m 3% (x,t
fL-T .1§;4_l __11_%_1

xal 3t

x=| (2‘4?
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Eq. (2.2) can now be solved for the lateral deflection y(x,t).

In the course of obtaining this solution we seek a relationship between
the velocity at the end (x=L), (output) due to a force at the same end
(input). This relationship 1s best expressed in terms of a transfer
function which can be obtained by taking the Laplace transform of eq.
(2.2) with respect to the time variable and evaluating the result at
x=L. Since we are interested in the velocity, the result must be
multiplied by the Laplace variable,s which is equivalent to the time

derivative. The desired transfer function 1s given by

ii%;il . sinh /57T sl

L o1 cosh/p/T sL + ms sinh /o/T s (2.5)
In order to simplify the problem further, we will set p=T=1l, |In
addition it is convenient to allow the end mass to go to zero since this
term only effects the uncontrolled frequencies and not the system

stability. Equation (2.5) now reduces to

y(L,s) , sinh s _ G(s) (2.6)
cosh s

L

Equation (2.6) 1s the open loop transfer function relating the velocity
at the end to the force at the end of the fixed-free cable.

With eq. (2.6) as a starting point we can now examine the system
characteristics for both open and closed loop control using root locus

analysis.
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TI1. Flexible Cable - Stability and Control

The system natural (open loop) frequencies can be obtained by
setting the denominator of the transfer function equal to zero and
solving for s, where s = n + fw, It is easily verified that the
solution of cosh s = O from Eq.(2.6)wi1l yleld imaginary values of s

corresponding to the frequencies associated with a fixed-free cable.

These are given by

n=0, w = 2L, k = £1,22,... (2.7)

-

where k is an integer which serves to identify a frequency.

Feedback Control

The system has open loop fnput, fL and output § related through
G(s). We now close the loop by feeding back veiocity with a gain K, see

Figure 3.
The closed 1oop transfer function can be shown to be

G(s), = (1 + ke(s)1"! 6(s) . (3.1)

The closed-loop system dynamics can be determined from the closed-loop

characteristic equation
1+KG(s)=0 (3.2)
Now all the classical tools for control design can be used [3].
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For velocity feedback at the cable end, the open-loop transfer function
was shown to be

. sinh s (2.6)
6(s) = Zoshs

Using Eq. {3.2) the associated closed-loop characteristic equation

becomes

cosh s + K sinh s = 0 (3.3)

If we let s = n + {fw we can obtain an analytic solution for the feedback

by velocity. The results are given by

- - m7
Tanh n = <K  ; w - (m odd)
(3.4)
I Y
Tanh n g W= (m even)

The root locus plot is shown in Figure 4.

It is seen from the root locus that all the modes are contrclled by
feeding back the velocity at the end of the cable to a force at the end.
Furthermore no special filter is needed tc process the sensor signal.
For this particular case all modes are affected the same for a given
gain. For gains less than one, the frequencies of vibration are the
same as the open-loop frequencies but the motion is camped out. For

gains greater than one the frequencies jump to those of a fixed-fixed
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cable and the motion is also damped. At a gain of one, n = - » and it
can be shown that the system comes to rest in a finite time [4].
Although this simple problem can be solved analytically, the more
general problem to follow would become analytically tedious.
Consequently, a numerical method i5 used. Most computer routines that
generate root-loci need to be supplied with polynominal functions or
factors [5]. In this work the solution of a transcendental equation is
required. One method of solution, for the generation of the root loci,
is the use of a computer code which includes an IMSL routine called
ZSCNT which solves for the roots of a set of non-linear simultaneous
equations [6]. The complex characteristic equation, Eq. (3.3) s one of
these sets when separated into real and imaginary equations. The
procedure is to apply repeatedly the ZSCNT routine starting with the
open-loop pole position with zero gain. Then, incrementing the gain,
solve for the first closed-loop pole position. This pole is then used
as the start point for solving for the pole at the next higher gain
value and so on. This method is found to be highly reliable for
calculating root-loci, although occasionally sensitive to abrupt changes
in locus direction. A program listing with an example input and output

file is given at the end of this report.

Feedback Control with Time Delay

Time delay is now introduced into the system such that the feedback

of velocity is described by the diag-am in Figure 5. As we have deter-
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mined previously, the open-loop velocity force transfer function for the

fixed-free cable s

G(s) = %32—: (2.6)

Adding the time delay of e”ST to the feedback loop yields a closed loop

transfer function of the form

G(s)e = 1+ iifgt G(s) (3.5)
which results in the characteristic equation
: coshs +K e > sinhs =0 (3.6)
l
or
i cosh s + K (cosh sT - sinh st ) sinh s = 0 (3.7)

By letting s = n + iw and incrementing the gain, K for a fixed time
] delay, T, the root locus for the cable with delayed feedback of
. velocity can be obtained. The root locus for time delays of 0.1, 0.5,
and 1.9 are shown in Figures 6,7, and 8, respectively. These diagrams
i show clearly that unlike the no delay case that for any delay there are

associated unstable roots. A relationship between the delay time and

the unstable root. can be determined as follows:
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Starting with the characterist.c equation for the cable with delay

eq.(3.7) we can note that it has the form of
' F(s, k, T)=0 (3.8)

Letting s = n + iw and expanding yields a real equation and an imaginary

equation of the forms

R(n, w, K, T.) = 0 (3.9)

i _ and

I (ny w, K, T ) =0 (3.10)

WL et

If we select a particular value of T we can suppress its dependence in
eqs. (3.9)and (3.10). Further we can note that the real and imaginary
‘ parts of the solution along any branch of the root locus are functions

of the gain K. Hence egs. (3.9) and (3.10) take the form

R (n(K), w(K), K)

n
o

(3.11)

and

"
o

I (n(k), «(K), K) (3.12)
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By using the derivative chain rule we find

R dn . 3R dw . 3R _

n & " 30 @ * k"0 (3.13)
and

3] dn 31 d 31

EL i S e (3.14)

We are interested in solving for the quantity %% at the point where
K=n=0. Evaluated at these conditions %% describes how the real
part of the solution departs from the zero gain roots on the imaginary
axis. A positive value would yield instability for a small gain.

Solving for %% or n' yields

where the subscripts indicate the partial derfvatives in (3.13) and
13.14).

"~ Applying eq. (3.15) to the characteristic equation for our system
(3.7) yields the simple result

n' = ~cos & T ’3.16)
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Hence instability occurs whenn' > 0 or

coswT < 0

(3.17)
Therafore, the system would be unstable if
l 'rr 3n
' 7 et <7
(3.18)

'
i etc.
5
t

If we deal only with the first cycle and substitute the value for w

given by eq. (2.7), eq. (3.18) can be rewritten in the form

. Ldenecw <36 +1) (3.19)
; From eq. (3.19) it can be observed that for a - value of delay there

; will be a value of k (mk) for which the system is unstable. To

- demonstrate the validity of this result we can return to the numerica!

E; results we displayed previously. For the three time delays of interest
tl we have

.

. T o= 0.1 5.5 < k < 15.5

E v = 0.5 1.5 < k < 3.5

—
1]

0.9 1.05< k < 2.16




e | B

Since k must be an integer, these values describe particular frequencies
which would be driven unstable for small gain. Also from Figures 6, 7,
and 8 it can be seen that the cycles are repeated as indicated by eq.

(3.18).
iV. Feedback Control with First Order Actuator

The previous investigation showed the effect of a control system
which included pure delay on the stability of a fixed-free cable. The
purpose of this section is to show the effect a first order actuator

might have on the cable stability both with and without a pure delay.

First Order Actuator without delay

We will initiate the study by placing a first order actuator in the
system as described by Figure 9. Here the time constant associated with
the first order system is designated by T. From the fiqure, the closed

loop transfer function can be shown to be

G(s

G(s)CL =

—
»
.
—
~

K

1+ 15+l

G(s)

where G(s) is given by eq. (2.6). The resulting characteristic equation

is given by




mr

cosh s +s mcoshs + Ksinhs = ( (4.2)

By letting s = n + iw, and incrementing the gain K for a fixec value of
T, the root locus for the cable with velocity feedback through a first
order actuator can be obtained using procedures described previously.
The resulting root locus for values of t of 0.1 and 0.5 are shown
in Figures 10 and 11 respectively. These diagrams show that the first
order actua‘cr by 1tself does not lead to any unstable roots for any
gain., However the strong stability characteritics displayed by direct
feedback as shown in Figure 4 are severely reduced, especially at the
higher frequencies. This result is easily explained by noting that the
first order actuator has a finite bandwidth and hence does not respond
very well to the frequencies outside of this bandwidth. Typically the
bandwith of a first order system is characterized by wg * 1/1. For our
two cases, wg * 10 and 2 for Figures 10 and 11 respectively.
Consequently, frequencies above these values are not affected as much as
those below. However, as indicated previously, the control over those
frequencies below the respective bandwidth fréquencies is considerably
reduced over the case where the actuator dynamics is ignored. One would
expect that to control even Tow frequencies, an actuator with a large

bandwidth is required.

First Order Actuator with Delay

We can now include a pure delay in conjunction with a first order

actuator. This situation might occur if a digital control system is




LA it

TR

e VI WYW VWP TR YT 'J;-"—"'t‘:'.v;—-v:'?;—‘wr_w'ﬁ'ﬂj'v NN e W
. . A N PR . - - I - SRR S S SR I S

R ETE I e
,-‘.\-.. - L] -

used to drive the actuator. The block diagram displaying this type of
set up is shown in Figure 12. From this diagram we can develop the

closed loop transfer function which is given by

G(S)CL = G(s)

Ke'ST (4.3)
18=1 G(s)

1+

wnich leads to the characteristic equation

cosh s + st cosh s + K {(cosh st - sinh st)sinh s =0 (4.4)

Proceeding in the same manner as before, the roct locus for a cable with
velocity feedback thru a first order actuator with delay can be
determined.

The root loci for the cases where v = 0.1 and 0.5 are shown in
Figures 13 anu 14 respectively. It can be observed that in both cases,
the pattern of stable and unstable roots is the same as that which
occurred with pure delay. The first frequency at which instability
occurs however is slightly lower for the case of a first order actuator

with delay than that with pure delay.

V. Feedback Control with System Dampiny

The various types ot damping that could be considered are

structural, viscous, and Coulomb [8]. The viscous damping model is

T COETE T LT N T W Y w LT .Y
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chosen here, as this model is the most easily understood and most widely

used.
The Fixed-Free cable model for a constant tension cable
viscous damping is given by eq. (2.1) or
cyplx,t) +oy,, (x,t) = Ty, (x.t)
where the viscous damping is
cyt(x.t) = «f(x,t)
The boundary condition at the fixed end, x=0 is
y(0,t) = 0
and at the free end, x=L is

| 14
Lo Tt [ = mrgeot)

with

The transfer function of this model can be obtained by taking the

(5.1)

(2.3)

(2.4)

Laplace transform of eq. (5.1) with respect to the time variable and

evalyating the result at x=L. Again we are irterested in the velocity -

force transfer function. Fur the case where the end mass 1s zero, this

transfer function now has the . orm

77




s sinh vs? + cs
fL /sT + ¢s cosh YsZ ¥ cs (5.3)

(2]
-——
v
~
"
—
-
w
1}

The system diagram for the damped system is illustrated in Figure 2 with ‘
G(s) now given by eq. (5.3).

The closed-loop characteristic equation is given by

Vs? + ¢cs  cosh Vs? +¢cs + Ks sinhVs? + cs (5.4)

By letting s = n+iw for fixed damping coefficient, ¢ and incrementing
the gain, K, the root locus can be obtained as before.

The addition of damping to the c¢losed-loop system merely shifts the
root loci from poles with zero real parts to poles that have negative
real parts. The diagram will look like Figure 4 with starting and
ending points shifted into the left half plane and again no unstable

" roots.

Feedback Control with System Damping and Jelay

A more interesting result is obtained by adding time delay to a
system with demping. The closed-loop ~haracteristic equation of this

case is given by

v5? + s cosh VST + cs + Ks (cosh sT - sinh s7) sinh +S° + cs (5.5) ‘
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By letting s = n + {w and incrementing the gain, K for a fixed time
delay, and a fixed damping coefficient, ¢, the root locus for the cable
with damping and delayed feedback of velocity can be obtained. The root
locus for time delay of 0.1 and damping coefficients of 0.1 and 1.0 are
shown in Figures 15 and 16 respectively. These diagrams are comparable
to the diagram in Figure 6, but shifted to the left by an amount
proportional to the damping coefficient. This observation leads to the
conclusion that given sufficient damping the system is stable for small

values of gains even with time delay.

VI. Closure

The cable problem discuss2d in this report can be made extremely
stabfe by feeding back velocity at the end of the cable to a cc-located
force at the end of the cable. However it was shown that if any delay
at all is used in implementing this feedback control, the system becomus
unstable. This result was determined analytically with no restrictive
assumpticns other than those maue for the original governing equation. ' kﬁ
The results were confirmed for selected numerical calculations.

In addition the results of a first order actuator and a first order
actuator with delay wero presente< indicating that zany delay leads to
instability. Without deiay the first order actuator does not lead to
ins ability but 1s considerably less effective in stabilizing the cable
than if no actuatur dynamics were present. Ffurther, the effec., at

higher frequencies are limited due to the bundwidth of the actuator.
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The addition of damping shifts the whole root locus to the left and
allows a system with pure delay to remain stable for a small amount of

gain,




REFERENCES

1. Lutze, F. H and Goff, R. M. A. "Application of Classical Tech-
niques to .ontrol of Continuous Systems," Third VPI&SU Symposium,
Blacksburg, VA, June 1981.

2. Meirovitch, L. Elements of Vibrations Analysis, McGraw-Hill, Inc.,
New York,, 1975, pp. 79-20.

3. D'Azzo, J. J. and Houpis, C. H. Linear Control System Analysis and
Design, McGraw-Hill, Inc., New York, 1975.

4q. Parks, P. C. "On How to Shake a Piece of String to a Standstill,"
Recent Mathematical Developments in Control, Academic Press, 1973,
1973, pp. 26/-287.

5. Melsa, J. L. and Jones, S. K., Computer Programs for Computational
Assistance in the Study of Linear Control Theory, Second Edition,
McGraw-Hill, New York, 1973, pp. 114-120.

€. Internatfonal Mathematical and Statistical Libraries, IMSL, Edition
8, IMSL, Inc., Houston, Texas, July 1980.

7. Gevarter, W. B. "Basic Relations for Countrol of Flexibie
Vehiclas," AlAA Journal, Vol. 8, No. 4, Apr. 1970, pp. 666-672.

8. Hurty, W. C. and Rubinstein, M.F. Dynamics of Structures,
Prentice-Hall, Inc., N.J., 1964, p. 257.




ey e ————— T Y T YW T T A N T .":‘7’?’,’-‘_‘1*’-‘??'_?_“".‘5'7-'.—-‘?'?'.'";"r.rletf.::"
Y
I /ﬂx,t)
!
T| ‘/{l l
! ~a
' 4 ’l’2
|
|
y yix, 1)
| i | Y2
X __d4-.<k -4
L
; (a)
|
fix, )
&
| Tix)
' alx, Y 1 )
oy, 0. 22 g
ox
| , Tix. ), 3Tix, t) i
K . ax
) dx ’

{( o)

Figure 1 (Cable Element




P At st et AT AT SIS AR Sen e A RN i Ji L SURL R L SE S R S R T M

et el oAl

o <

yix, t)

ANMNANNNNS RN\ .
v
>

( a)

Figure 2 Fixed-Free Cable(discrete mass at end)

83




..........

Gls)

K e—

Figure 3 Ezedback §Svstem

Im.
K104 k=10 ?
-~ 9 o
K=0. 96 K=01
e o L‘
K-l.rOd : :\nlo — T
K=0.96 <ol |
K=1.04 K10 |
' T QI T e

Cnaracteristic Equation

coshs « Ksinhs =0

Figure 4 End-End Velocity F oot Locus
( Fixed-Free Cable )




~8Ct | K

Figure 5 Feadback System With Delay

8
8
<]
8 <
5 <
|
g ~
¢ _—
—
>8
T —
= ——
g, =
: 4{ _
Sy
8 ==
200 -1.00 0.00 1.00 2.00
REAL

) FIXED-FREE CRBLE FEEDING BACK VELOCITY
' 7O _FORCE AT END. DELAY = 0.!

Figure 6




[UEARTNT I

W e

60.00

g <
2
<7
8 =
< =
>3
s
pored <<
g
g <]
8 1
—-/
<l
8
2 Y |
r_ﬁ’
8 = |
©z.00 -1.00 0.00 1.G0 2.00
REAL
F{XED-FRE A F NG BACK VELOC]TY
AY =
Figure 7
86




o

| 8
. a =
l 8 i
8 —
; <
» <
: -
- gg —
i £ |
i 8 —
‘ - <
W

: P\_'_

8 : — i

9% 00 -1.09 0.0 1.00 2.00

REAL
FIXED-FREE CRBLE FEEDING BRCK VELCCITY

® TO_FORCE AT END. DELAY = 0.9
:_- Figure 8
,,.
°

87




: £ ;
. G(s)
‘ 1
TS+l LK
i Figure 9 [Feedback System with First
: Qxder Actuator :
’ 8

l

v ERY
40.00 $0.00
AW ANV AN S, S .S Y S o S )

l
- g8 ;
[ 2. I S Rt R
: 2 g
: g | S |
3 N G e
~N ' . |
| < |
]
> 8 = .
= , - !
S — LT
L == !
Sl i
L :
Bl ===
200 -ien oom 1.00 2.00
» REAL
T FIXED-FREE CRBLE FEEDING BACK VELOCITT
~ TU FORCE - 18T 0©°T2 T=0). |
b Figure 10
. a8




-

8
3 T
=
8 5<::_‘:'__.i l
3
g <
‘ q
z8 | >
2R i =
é ; IL?:‘ i
rs i —
R+ —— r”“’:‘f
8 5 >
e i B
I . .
. < |
glr <= i
©2.co -\.ﬁngL_oﬂoa 1.00 2.00

FIXED-FREE CABLE FEEDING BACK VELOCITY

10 FORCE -GELAY & 19T ORDER T=0.1
Figure 13

9C

60.00

!
| : i
! —_—
8 i L
3 i i ~
; (_! |
8 —_—
< —t o
| <~ :
g3 S -
2R
g | i
i L=
ff—=r- - — —
; —_— !
‘ L.;::
8‘ < |
S e - , ]
C\

Figure 14




- hi it ol Sadh Bindit S TSN SRR BN . T T e N e ‘_‘.'

8
3 ;
q |
8 ,l_—
8 1
9
>8 |
x®
gat ! -
= 4
a
8 )
g, q
§
8 <
ol S -
) q
<
8 3 <
. 2.0 -1.00 0.00 1.00 2.00
| RERL
FIXED-FREE CABLE FEEDING BACK VELOCITY
Figure 11
i
fL, G(s) ¥
»
1 ____’ -5 T
Ts+1 . & K
.
Figure 12 Feedback Svystem with First Order

Actuator and Delay




ha et arsgn st (S ne s DRI Ty ndh AR - T
8
8 8
Sy 8
8 =i <
3 S 8 <
< 8 S
b (
8 * >
| d .> 8
. ¢ _ . >
¢ -
>-8 «E *p
. 9K | > -
i = I —— __8 n
- B E 1R
: g el ~ =8
- : > g 2
¢ )
:i g_ 1 __“< T - 8. <(
; P =i al 1
R R <
: g e = |
- °% %0 -1.0C 0 00 .00 200 8 T— ls .‘
} REAL ©.400 -2.00 0.00 2.00 4.00
) REAL
F 1XED.-FREE CABLE FEEDING BACK VELOCITY - ICK Vv [Ty
DAMPING C = 0.1 - DELAY T = 0.1 DAMPING C = 1.0 - DELAY T = 0.1
- Figure 15 Figure 16
[ ]
»

91




% R

a OO 0O o0 0 0 06

B

(@)

B\ DENRE

.v—rﬁrvv"
a1

2%}
<O

" v YRS N G TR TR T TR T T v e YL T T e T TR e T
D AR ke S s e R TR ) P e T e T - - .

Program Listing

THIS ROUTINE SOLVES A SYSTEM OF TRANSENDENTAL NONLINEAR EQUATIONS

IT USES IMSL ROUTINE ZSCNT

THE VARIABLES USED ARE: PAR(l) = G GAIN, PAR(2) = TIME DELAY
X(l) = R = REAL PART OF ROOT, X(2) W = IMAGINARY PART OF ROOT
S = COMPLEX (R,W), K = NO. OF ROOTS, NR = NO, OF POINTS PER ROOT
THE PROGRAM READS FROM DATA FILE 3 AND WRITES TO FILE 4 .

CHAR = CHARACTERISTIC EQUATION (THEIS CASE FIX-FREE CABLE W/DELAY
COMPLEX SH,Z,CH,SI,CO,S,CHAR,TS

EXTERNAL FCN

DIMENSION X(50),F(50),PAR(50, ,WK(50)

READ IN TIME DELAY

READ (3,*) PAR(2)

READ ONE AT A TIME EACH OF 19 ROOTS, INITIALIZE GAIN = 0

DO 30 K=1,13

PAR(1)=0.0

READ (3,*) X(1),X(2)

WRITE (4,5) Xx(1),X{2),PAR(2)

FORMAT (10X,33HSTART REAL IMAGIN, AND TIME DELAY,/,3E15.4,//)
WRITE (4,2)

FORMAT(6X, 7THREAL S,9X,7HIMAG., S,7X,10HNORM ERROR,5X,4HGAIN)

8 SIGNIFICANT FIGURES, TWO EQUATIONS (I.E. REAL AND IMAGINARY)
NSIG = 8

N = 2

ITMAX = 200

KNN = N

SOLVE EQUATIONS FOR 100 POINTS FOR EACH ROOT

DC 20 NR = 1,100

CALL ZSCNT (FCN,NSIG,N,ITMAX,PAR,X,FNORM,WK,IER)

WRITE(4,1) (X(I)}, I=1,KNN), FNORM, PFAR{(1l)

FORMAT (4E15.4)

INCREMENT THE GAIN SLOWLY SO THE SOLVER TO FOLLOW THE ROOT LOCUS
PAR(L1) = 1.04*(PAR(1)+0.02)

WRBITC4,4)

FORMAT . 1H1l)
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CONTINUE

STOP

END

SUBROUTINE FCN (X,F,N,PAR)

COMPLEX SH,2,CH,SI,CO,S,CHAR,TS
DIMENSION X(N),F(N),PAR(1)
ABREVIATE SIN, COS, SINH, AND COSH
SH(Z)=(CEXP(2)-CEXP(-~2))/(2.0,0.0)
CH(Z)=(CEXP(2)+CEXP(-2))/(2.G,0.0)
SI(Z)=CSIN(2Z)

CO(2)=CCOS(2)

R=X(1)

W=X(2)

G=PAR(1)

S=CMPLX (R,W)

TS = S * PAR(2)

THE CHARACTERISTIC EQUATION GOES HERE
CHAR=CH(S)+G*(CH(TS)~-SH(TS) )*SH(S)
F(1l)aREAL(CHAR)

F(2)=AIMAG(CHAR)

RETURN

END
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Data Input File

1

0 1.570796
.0 4.712389

0 7.853982

0 10.995574

o O O o o

Qutput For One Root

AT S

0

START REAL IMAGIN., AND TIME DELAY

REAL S
.0
.2059E-01
.4211E-01
.6462E-01
.8820E-01
.1129E+00
.1389E+00
.1663E+00
.1952E+00
. 2257E+00C
. 2580E+00
«2924E+00
.3291E+0Q0
.3685E+00

0.

SO O O O O O O O O O O O O O

1571E+01

IMAG. S

.1571E+01
.1574E+01
.1578E+01
.1581E+01
.1585E+01
.1589E+01
+1593E+01
.1598E+01
.1603E+01
.1609E+01
.1615E+01
.1621E+01
.1629E+01
.1638E+01

94

0

O O O O O O © O O O O o O O

.1000E+0Q0

NORM ERROR

.9858E-13
.5090E-12
.1089E-13
.2259E-~11
.9173E-12
.2791E-12
.9437E-13
.1360E-11
.2402E-11
.1796E-11
.9998E-13
.1628E-11
.1374E-11
.3695E~12

O O O O O O O o O O O o O o

GAIN

.0
.2080E-01
.4243E-01
.6493E-01
.8833E-01
L1127E+00
.1380E+00
.1643E+00
.1917E+00
.2201E+00
.2497E+00
.2B05E+00
.3125E+00
.3458E+00

...........



